Attachment A to Resolution No. R4-2006-XXX	R
Proposed Amendment to the Water Quality Control Plan – Los Angeles Region	E
to Incorporate the	1
Total Maximum Daily Load for Metals and Selenium in the Calleguas Creek, its Tributaries and Mugu Lagoon]
Proposed for adoption by the California Regional Water Quality Control Board, Los Angeles Region on June 8, 2006	S
Amendments	T
Table of Contents Add:	k
Chapter 7. Total Maximum Daily Loads (TMDLs)	
7- 19 Calleguas Creek Watershed Metals and Selenium TMDL	
List of Figures, Tables, and Inserts Add:	Т
Chapter 7. Total Maximum Daily Loads (TMDLs) Tables	_
7-19 Calleguas Creek Watershed Metals and Selenium TMDL 7-19.1. Calleguas Creek Watershed Metals and Selenium TMDL: Elements 7-19.2. Calleguas Creek Watershed Metals and Selenium TMDL: Implementation Schedule	k N
Chapter 7. Total Maximum Daily Loads (TMDLs) Calleguas Creek Watershed Metals and Selenium TMDL	1
This TMDL was adopted by:	A
The Regional Water Quality Control Board on [Insert date].	П
This TMDL was approved by:	1
The State Water Resources Control Board on [Insert date]. The Office of Administrative Law on [Insert date]. The U.S. Environmental Protection Agency on [Insert date].	I
The elements of the TMDL are presented in Table 7-19.1 and the Implementation Plan in Table 7-19.2	Ţ
	III-4

 \mathbf{R}

Table 7-19.1. Calleguas Creek Watershed Metals and Selenium TMDL: Elements

TMDL Element	Calleguas Creel	k Watershed I	Metals and So	elenium TMDL				
Problem	Three of fourteen reac	hes in the Call	eguas Creek V	Watershed (CCW	<u>')</u>			
Statement	including Revolon Slo	ough, Lower Ca	alleguas Creel	k – Reach 2, and				
	Mugu Lagoon are ider	ntified on the 2	002 Clean Wa	ater Act Section				
	303(d) list of water-qu	ality limited so	egments as im	paired due to				
	elevated levels of meta	als and seleniu	m in water. T	The 303(d) listing	S,			
	which were approved	by the State W	ater Resource	es Control Board	in			
	February 2003, require	e the developm	nent of TMDL	s to establish the	;			
	maximum amount of p	ollutants a wa	ter body can r	receive without				
	exceeding water qualit	ty standards. T	MDLs for list	ted metals and				
	selenium are presented herein in one document because, as a class of							
	compounds, they possess similar physical and chemical properties that							
	influence their persiste	ence, fate, and	transport in th	ne environment.				
umeric Targets	This TMDL established				eria			
S	in dissolved fraction for	or copper, nick	tel, and zinc, a	and in total				
	recoverable form for n				for			
	mercury; (3) Bird egg			_				
	Sediment quality guide							
	listed reaches. Attainment of sediment quality targets will be evaluated in combination with sediment toxicity data, if available.							
	in combination with se	ediment toxicit	ty data, if avai	lable.				
	1. Copper Targets	ediment toxicit	ty data, if avai	lable.	-			
		Water Qua	lity Target	Г	1			
	1. Copper Targets	Water Qua	lity Target d Copper/L)	Sediment Target]			
		Water Qua (ug dissolved Dry Weather	lity Target d Copper/L) Wet Weather	Sediment Target (SQuiRTs, ERL)				
	1. Copper Targets Subwatershed	Water Qua (ug dissolved Dry Weather CCC	d Copper/L) Wet Weather CMC	Sediment Target (SQuiRTs, ERL) (ppb)				
	1. Copper Targets Subwatershed Mugu Lagoon	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹	d Copper/L) Wet Weather CMC 4.8*WER¹	Sediment Target (SQuiRTs, ERL) (ppb) 34000				
	1. Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹	lity Target d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000				
	1. Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹	dity Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹ 26.3	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA ²				
	1. Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹	dity Target d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA ² NA ²	-			
	1. Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9	dity Target d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA ² NA ² NA ²				
	1. Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9 29.3	dity Target d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6 29.8	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA ² NA ² NA ² NA ² NA ²	ria			
	1. Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California To	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9 29.3 copper in the TMDL oxics Rule (CTR). The	dity Target d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6 29.8 are expressed as the ose criteria include a	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA² NA² NA² NA² copper water quality crite numerical threshold multiparts and the shold multiparts are shown as a single shown as a sing	tiplied			
	1. Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California To by a water-effect ratio (WER)	Water Qua (ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL oxics Rule (CTR). The	dity Target d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6 29.8 are expressed as the ose criteria include a fault value of 1.0 unlo	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA² NA² NA² NA² copper water quality crite numerical threshold multess a site-specific WER is	tiplied s			
	1. Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California To by a water-effect ratio (WER) approved. To use a WER othe USEPA's WER guidance and	Water Qua (ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL oxics Rule (CTR). The b. The WER has a defer than the default of 1 adopted by the Region	dity Target d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 41.6 29.8 are expressed as the ose criteria include a fault value of 1.0 unle 1.0, a study must be conal Board through the	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA² NA² NA² NA² NA² copper water quality crite numerical threshold multess a site-specific WER is conducted consistent with the state's basin plan americal market is stated in the state's basin plan americal threshold multiple state's basin plan amer	tiplied s i ndmei			
	1. Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California To by a water-effect ratio (WER) approved. To use a WER othe USEPA's WER guidance and process. A WER study for Mo	Water Qua (ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL oxics Rule (CTR). The b. The WER has a defer than the default of 1 adopted by the Regionagu Lagoon (Reach 1)	dity Target d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 41.6 29.8 are expressed as the ose criteria include a rault value of 1.0 unde 1.0, a study must be conal Board through the open challed a conal Board through the open calleguas Criteria includes a conal Board thr	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA² NA² NA² NA² copper water quality crite numerical threshold multess a site-specific WER is conducted consistent with the state's basin plan americate (Reach 2), Revolon State (Reach 2), Revolon	tiplied s i ndmer Sloug!			
	1. Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California To by a water-effect ratio (WER) approved. To use a WER othe USEPA's WER guidance and process. A WER study for Mu (Reach 4) and Beardsley Was Board approves site-specific Vanishing Company Compan	Water Qua (ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL oxics Rule (CTR). The b. The WER has a defer than the default of I adopted by the Region up Lagoon (Reach 1) h (Reach 5) has been WERs for copper in the	dity Target d Copper/L) Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6 29.8 are expressed as the cose criteria include a fault value of 1.0 unle 1.0, a study must be conal Board through the conal Board through the conal submitted to the Reguese waterbodies, the	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA² NA² NA² NA² copper water quality crite numerical threshold multess a site-specific WER is conducted consistent with estate's basin plan americal threshold state's basin plan americal (Reach 2), Revolon Strional Board. If the Region TMDL targets will be m	tiplied s ndmer Slougl nal odifie			
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California To by a water-effect ratio (WER) approved. To use a WER othe USEPA's WER guidance and process. A WER study for Mt (Reach 4) and Beardsley Was Board approves site-specific Vin accordance with all legal and statements.	Water Qua (ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL oxics Rule (CTR). The b. The WER has a defer than the default of I adopted by the Regional Lagoon (Reach I) h (Reach 5) has been WERs for copper in the degulatory requirement	Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 26.3 4.8*WER¹ 41.6 29.8 are expressed as the ose criteria include a fault value of 1.0 unle 1.0, a study must be conal Board through the conal Board through the conal board through the conal submitted to the Regular Submitted Subm	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA² NA² NA² NA² copper water quality crite numerical threshold multess a site-specific WER is conducted consistent with estate's basin plan americal threshold state's basin plan americal (Reach 2), Revolon Strional Board. If the Region TMDL targets will be m	tiplied s ndmer Slougl nal odifie			
	1. Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California To by a water-effect ratio (WER) approved. To use a WER othe USEPA's WER guidance and process. A WER study for Mu (Reach 4) and Beardsley Was Board approves site-specific Vanishing Company Compan	Water Qua (ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL oxics Rule (CTR). The b. The WER has a defer than the default of 1 adopted by the Regional Capus Lagoon (Reach 1) th (Reach 5) has been WERs for copper in the dregulatory requirementations set forth in Ta	Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 4.8*WER¹ 41.6 29.8 are expressed as the cose criteria include a rault value of 1.0 unle con all Board through the cond b	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA² NA² NA² NA² copper water quality crite numerical threshold multiess a site-specific WER is conducted consistent with the state's basin plan amer reek (Reach 2), Revolon Etional Board. If the Regio of TMDL targets will be med in accordance with the	tiplied s ndmen Slough nal odifie			
	Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California To by a water-effect ratio (WER) approved. To use a WER othe USEPA's WER guidance and process. A WER study for Mu (Reach 4) and Beardsley Was Board approves site-specific Vin accordance with all legal ar approved WERs using the equal to the control of the co	Water Qua (ug dissolved Dry Weather CCC 3.1*WER¹ 3.1*WER¹ 25.9 3.1*WER¹ 27.9 29.3 copper in the TMDL oxics Rule (CTR). The b. The WER has a defer than the default of 1 adopted by the Regional Capus Lagoon (Reach 1) th (Reach 5) has been WERs for copper in the dregulatory requirementations set forth in Ta	Wet Weather CMC 4.8*WER¹ 4.8*WER¹ 4.8*WER¹ 41.6 29.8 are expressed as the cose criteria include a rault value of 1.0 unle con all Board through the cond b	Sediment Target (SQuiRTs, ERL) (ppb) 34000 34000 NA² NA² NA² NA² copper water quality crite numerical threshold multiess a site-specific WER is conducted consistent with the state's basin plan amer reek (Reach 2), Revolon Etional Board. If the Regio of TMDL targets will be med in accordance with the	tiplied s ndmen Slough nal odifie			

Calleguas Creek Watershed Metals and Selenium TMDL						
2. Mercury Targets a) Fish Tissue (Hum b) Fish Tissue (Wild	life): 1 (TL) 3' < 50 mm; nm: e): less rget: 0.05	m: 0.03 mg methy 0.05 mg meth 0.1 mg methy than 0.5 mg tota 1 ug total mercur	ylmercury/kg wet w ylmercury/kg wet v rlmercury/kg wet w I mercury/kg wet w ry/L			
3. Nickel Targets						
Subwatershed		ality Target ed Nickel/L) Wet Weather	Sediment Target (SQuiRTs, ERL)			
	CCC	CMC	(ppb)			
Mugu Lagoon	8.2	74	20900			
Calleguas Creek 2	8.2	74	NA ¹			
Calleguas Creek 3	149	856	NA ¹			
Revolon/Beardsley	8.2	74	NA^1			
Conejo	8.2 160	74 1292	NA¹			
Conejo Arroyo Simi/Las Posas Sediment targets were not select A study to support a SSO f	160 168 led as alternative targ	1292 958 get for this reach as it is	NA ¹ NA ¹ is not listed on the 303(dee Regional Board a			
Conejo Arroyo Simi/Las Posas Sediment targets were not select A study to support a SSO for currently under reviewed be nickel is approved, the Regfor nickel based on the app 4. Selenium Targets	160 168 Led as alternative targer or nickel has been by the Regional Engional Board will broved SSO. Water Qua	958 get for this reach as it is not submitted to the Board and U.S. EF	NA ¹ NA ¹ is not listed on the 303(content of the August 1) is not listed on the 303(content of the 303(content of the August 1) is not listed on the 303(content of the			
Conejo Arroyo Simi/Las Posas Sediment targets were not select A study to support a SSO f currently under reviewed b nickel is approved, the Reg for nickel based on the app	160 168 Led as alternative targer or nickel has been by the Regional Engional Board will broved SSO. Water Qua	1292 958 get for this reach as it is an authority and U.S. Efficient consider revision ality Target gelenium/L)	NA ¹ NA ¹ is not listed on the 303(de Regional Board a PA staff. If a SSO for to the numeric targets)			
Conejo Arroyo Simi/Las Posas Sediment targets were not select A study to support a SSO for currently under reviewed be nickel is approved, the Regfor nickel based on the app 4. Selenium Targets	160 168 Ted as alternative targetor nickel has been by the Regional Begional Board will broved SSO. Water Qua (ug Total S	1292 958 get for this reach as it is en submitted to the sound and U.S. Effective consider revision ality Target	NA ¹ NA ¹ is not listed on the 303(c) e Regional Board a PA staff. If a SSO f n to the numeric targ Bird Egg			
Conejo Arroyo Simi/Las Posas Sediment targets were not select A study to support a SSO for currently under reviewed be nickel is approved, the Regfor nickel based on the app 4. Selenium Targets	160 168 Ted as alternative targer or nickel has been by the Regional Bytonal Board will proved SSO. Water Qual (ug Total S) Dry Weather	958 get for this reach as it is en submitted to the Board and U.S. Effective consider revision ality Target gelenium/L) Wet Weather	NA ¹ NA ¹ is not listed on the 303(c) e Regional Board a PA staff. If a SSO f n to the numeric targ Bird Egg			
Conejo Arroyo Simi/Las Posas Sediment targets were not select A study to support a SSO for currently under reviewed by nickel is approved, the Regfor nickel based on the approved. Selenium Targets Subwatershed	160 168 led as alternative targer or nickel has been by the Regional Exponent Board will broved SSO. Water Quay (ug Total Start CCC	1292 958 get for this reach as it is en submitted to the Board and U.S. Effective consider revision ality Target gelenium/L) Wet Weather CMC	NA ¹ NA ¹ is not listed on the 303(de Regional Board at PA staff. If a SSO for to the numeric target Bird Egg (ug/g)			
Conejo Arroyo Simi/Las Posas Sediment targets were not select A study to support a SSO from currently under reviewed brickel is approved, the Regfor nickel based on the approved. Selenium Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3	160 168 led as alternative targer of the Regional Board will broved SSO. Water Qua (ug Total S Dry Weather CCC 71	1292 958 get for this reach as it is en submitted to the Board and U.S. Effects of the consider revision ality Target gelenium/L) Wet Weather CMC 290	NA ¹ NA ¹ is not listed on the 303(de Regional Board a PA staff. If a SSO for to the numeric target (ug/g) Bird Egg (ug/g)			
Conejo Arroyo Simi/Las Posas Sediment targets were not select A study to support a SSO for currently under reviewed by nickel is approved, the Regfor nickel based on the approved. Selenium Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley	160 168 led as alternative targer or nickel has been by the Regional Board will be gional Board Solve Total Solve	1292 958 get for this reach as it is en submitted to the Board and U.S. Effective consider revision solutions. Solution with the consider revision solution with the consider revision solution. The consider revision solution is consider revision solution. The consider revision solution is consider revision solution. The consider revision solution is considered as the con	NA ¹ NA ¹ Is not listed on the 303(c) Regional Board a PA staff. If a SSO f In to the numeric tary Bird Egg (ug/g) 6 6			
Conejo Arroyo Simi/Las Posas Sediment targets were not select A study to support a SSO from currently under reviewed brickel is approved, the Regfor nickel based on the approved. Selenium Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3	160 168 led as alternative targetor nickel has been by the Regional Board will broved SSO. Water Qual (ug Total S) Dry Weather CCC 71 5 5	1292 958 get for this reach as it is an submitted to the Board and U.S. Effects of the consider revision and the consider revision with the consideration with the considerati	NA¹ NA¹ NA¹ is not listed on the 303(c) e Regional Board a PA staff. If a SSO f n to the numeric targ Bird Egg (ug/g) 6 6 6 6			

R

E

TMDL Element	Calleguas Cree	k Watershed	Metals and	Selenium TMDL
	5. Zinc Targets			
	Subwatershed	(ug dissolv	ality Target ved Zinc/L) Wet Weather	Sediment Target (SQuiRTs, ERL)
		CCC	CMC	(ppb)
	Mugu Lagoon	81	90	150000
	Calleguas Creek 2	81	90	NA ¹
	Calleguas Creek 3 Revolon/Beardsley	338 81	214 90	NA ¹ NA ¹
	Conejo	365	324	NA ¹
	Arroyo Simi/Las Posas	382	240	NA^1
	1 Sediment targets were not selec	cted as alternative ta	rget for this reach as	it is not on the 303(d) list.
Source Analysis	between metals and particles of metals and particles of metals and particles of the source selenium in soil may be selenium in groundway Implementation Plants sources of metals in sources.	oundwater se was also a sign of wet and contributed a contributed also includes oil.	epage, and Ponificant source lry weather. He constituents etter Fally occurring curring nicketing source an significant so special studies.	OTW effluent. For the see. Sources were also digher loads were the due to the association of mercury in soil may the set, copper, zinc, and dight naturally occurring the set of address natural
Linkage Analysis	a conservative estimate. The model was used t	dynamic wat N (HSPF). The of receiving o calculate lost load and was	er quality Hyone model outpg water conce and reductions aste load alloc	drologic Simulation out generally resulted in entrations for metals. necessary to meet ations were calculated
Waste Load Allocations	WLAs apply to days we percentile flow rate for days when flows in the each reach. Annual n	d for both we when flows in or each reach. the stream excess loads of to low, medium	t and dry-wean the stream and The wet-wean the 86 th per the summercury in summercury in summercury and high a	ther. The dry-weather re less than the 86 th ther WLAs apply to ercentile flow rate for spended sediment were annual flow categories.

R

TMDL Element	Calleg	guas Creel	k Waters	hed Meta	ls and Sel	lenium TM	DL
	POTWs						
	nickel, and POTWs during developed for current info. The TMDL data to suppare not set for listed for set WLAs for confort discharge achieve finate available discontinuation. Inter	selenium i ring both w for mercury rmation in Implement for POTWs lenium. A copper and gers to put al waste load erim limits scharge da	n total recovet and drawet and drawet and drawet and drawet and of zinces because A margin nickel. I in place is ad allocate are set ecuta respectival WLA	weather Ws. Zince the numerical numerical numerical numerical numerical numerical waste learned to the numerical num	forms, and . Mass-bat allocation targets for s a task to coad allocation not discool 15% wants are incustion meas daily max 99 th and 9	ablished for l are applied sed WLAs a sare not set r zinc are atta provide State tions for sele tharge to react included included to allow sures necessatimum and mostin percentile copperable Coppera	to re because ained. e Board nium thes the w time ary to nonthly e of
	,,,,,,,	Inte			Final ^(e)		
	РОТЖ	Daily Maximum (ug/L)	Monthly Average (ug/L)	Daily Maximum (ug/L)**	Monthly Average (ug/L)**	lb/day	
	Hill Canyon WWTP	20.0	16.0	(a)	(a)	0.11*WER - 0.04	
	Simi Valley WQCP	(b)	(b)	<u>31.0</u>	<u>30.5</u>	(c)	
	Moorpark WTP	(b)	(b)	<u>31.0</u>	<u>30.5</u>	(d)	
	Camarillo WRP	57.0	20.0	(a)	(a)	<u>0.12*WER -</u> <u>0.04</u>	
	Camrosa WRP	(b)	(b)	<u>27.4</u>	<u>27.0</u>	(d)	
	* If site-speci implements of the final concentrati default trar (a) Concentrati and require (b) Interim lim (c) Discharges dry weathe met in Arro (d) Discharger wet weathe evaluated i	ed in accordance WERs, total coons shall not exion-based target islator of 0.96 ion-based final ements, but are units are not required from Simi/Las Podoes not contribute when discharge frangets are not	e with the app opper loading staceed the perfets have been co- limits will be not calculated ired because the way of the work of the conduc- orsas or downst but loading doges occur. More met in received	roved WERs us shall not exceed a mance standar onverted to total included in the last part of the Tate discharger is not reach lowered and mass-bream reaches. Uring dry weat antitoring will bring water and/or	sing the equation of current loading recoverable and permits in accommodate and permits	eek and Mugu lagood libe evaluated if ta cion-based WLAs and mass-based WLA	Regardless uent ies. c CTR SS guidance on during rgets are not pply during s.s will be

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL									
		Inte	erim		Final					
	РОТЖ	Daily Maximum (ug/L)	Monthly Average (ug/L)	Daily Maximum (ug/L)*	Monthly Average (ug/L)**	lb/day				
	Hill Canyon WWTP	8.3	6.4	(a)	(a)	0.3				
	Simi Valley WQCP	(b)	(b)	960.0	<u>169.0</u>	(c)				
	Moorpark WTP	(b)	(b)	<u>960.0</u>	<u>169.0</u>	(d)				
	Camarillo WRP	16.0	6.2	(a)	(a)	0.2				
	Camrosa WRP	(b)	(b)	<u>858.0</u>	149.0	(d)				

default translator of 0.998.

A study to support a SSO for nickel has been submitted to the Regional Board and is currently under reviewed by the Regional Board and U.S. EPA staff. If a SSO for nickel is approved, the Regional Board will consider revision to the final WLAs for nickel based on the approved SSO.

3. Interims and Final WLAs for Mercury in Suspended **Sediment:**

Waste load allocations for POTWs are based on the median monthly mercury effluent concentrations which are currently more stringent than the numeric targets multiplied by the design flow where the total load in water is assumed equal to the suspended sediment load. Interim WLAs for are based on 90th percentile concentration observed in effluent discharge and design flow and apply to all flow conditions.

POTW	Interim (lb/month)	Final (lb/month)
Hill Canyon WWTP	0.23	0.022
Simi Valley WQCP	0.18	0.031
Moorpark WTP	N/A	N/A
Camarillo WRP	0.03	0.015
Camrosa WRP	N/A	N/A

^{**} Concentration-based targets have been converted to total recoverable allocations using the CTR default translator of 0.997.

Concentration-based final limits will be included in the permits in accordance with NPDES guidance and requirements, but are not calculated as part of the TMDL.

Interim limits are not required because the discharger is meeting the final limits.

Discharges from Simi Valley WQCP do not reach lower Calleguas Creek and Mugu lagoon during dry weather. Monitoring will be conducted and mass-based WLAs will be evaluated if targets are not met in Arroyo Simi/Las Posas or downstream reaches.

Discharger does not contribute loading during dry weather. Concentration-based WLAs apply during wet weather when discharges occur. Monitoring will be conducted and mass-based WLAs will be evaluated if targets are not met in receiving water and/or downstream reaches.

R

IDL Element	Calle	eguas Cree	ek Waters	hed Meta	ls and Se	lenium	TMDL
	Urban Ru	<u>noff</u>					
	Mass-base	d WLAs a	re establish	ed for cop	per, nick	el, and se	elenium in
	total recov	erable form	ns. Mass-l	based WL	As are de	veloped t	for mercury
	in suspend	ed sedimei	nt. Interim	limits are	included	l to allow	time for
	dischargers	s to put in	place imple	ementation	n measure	es necess	ary to
							nd monthly
	average int						
	available d		-		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ye pere	01
	avanable d	iischarge u	ata.				
	I. Inte	rim Limit	s and Fina	l Waste I	and Alla	ocations t	for Total
			Copper, Ni				ioi Totai
							n ragaiving
			iiid waste i	oau anoca	mons are	applied i	n receiving
	wate	er.					
	Δ 1	Interim Li	mite				
	71.		as and Conejo	Creek	R	evolon Slou	ıgh
		Dry Daily	Dry Monthly	Wet Daily	Dry Daily	Dry	Wet Daily
	Constituents	Maximum	Average	Maximum	Maximum	Monthly Average	i iviayimi im
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	Copper	23	19	204	23	19	204
	Nickel	15	13	(a)	15	13	(a)
	(a) The	(b)	(b)	(b)	14 (c)	13 (c)	ts are not require
			s have not been				
			ons includes con				
		inment of intern lable.	n limits will be	evaluated in co	nsideration of	background	loading data, 11
	B. Fin	al WLAs					
	1. Dry	y-Weather	WLAs in	Water C	olumn (l	bs/day)	
		Calle	guas and Con	eio Creek	l Re	evolon Slou	ah
	Flov Rang	v	Average	Elevated Flow	Low Flow	Average Flow	Elevated Flow
		(b) 0.04*WE		-	0.03*WER		0.13*WER
) (U)					
	Coppe	0.02	<u>0.02</u>	<u>0.03</u>	<u>- 0.01</u>	<u>- 0.03</u>	0.02
	Nicke	0.02		0.440	<u>- 0.01</u> 0.050	- <u>0.03</u> 0.069	0.02 0.116
	Nicke Seleni	el 0.100 um (a)	0.120 (a)	0.440 (a)	0.050 0.004	0.069 0.003	0.116 0.004
	Nicke Seleni * If site imple	um (a) -specific WERs	0.120 (a)	0.440 (a) y the Regional approved WER	0.050 0.004 Board, TMDI as using the ed	0.069 0.003 waste load a quations set fo	0.116 0.004 Illocations shall borth above.
	Nicke Seleni * If site imple Regar	um (a) -specific WERs emented in accordless of the fin-	0.120 (a) are approved by rdance with the	0.440 (a) y the Regional approved WER opper loading eveloped for the	0.050 0.004 Board, TMDI as using the echange of the excellent is reach as it is not excellent.	0.069 0.003 waste load a quations set for ed current load is not on the 3	0.116 0.004 illocations shall borth above. ding.
	Nicke Seleni * If site imple Regar (a) Selen Imple	el 0.100 um (a) -specific WERs emented in acco rdless of the fin- ium allocations ementation action	0.120 (a) are approved by rdance with the al WERs, total contact the contact that the conta	0.440 (a) y the Regional approved WER opper loading eveloped for the	0.050 0.004 Board, TMDI s using the echange of the	0.069 0.003 waste load a quations set for ed current load is not on the 3 ide selenium	0.116 0.004 illocations shall borth above. ding.

R

E

TMDL Element		guas Cree			Is and Se	elenium T	
	Constituent		Calleguas C	reek		Revolon Slo	ougn
	Copper*	(0.00054*Q^2	2*0.032*Q - 0	.17)*WER - 0	.06 (0.000	2*Q2+0.0005	5*Q)*WER
	Nickel**	0.014*Q^2+0	.82*Q		0.027	*Q^2+0.47*Q	
	Selenium**	(a)				Q^2+0.47*Q	
	loads p (a) Seleniu Implen Q: Daily s II. Inter Sedin Final Interi	a loads do not expresented in the lim allocations he mentation action storm volume. im Limits ment (lbs/y) WLAs are marked limits for ghest annual storm with the limits for ghest annual stores.	table have not been d has include cons a and Fina yr) e set at 80° or mercury	eveloped for the ideration of the identity in suspection of the	nis reach as it e watershed-w for Merci on from H nded sedi	is not on the 30 ide selenium in ury in Sus	estimates set equal to
		F output fo	r the years		03.	n Slough	cu on
	Flov	w Range	Interim (Ibs/yr)	Final (lbs/yr)	Interim (lbs/yr)	Final (lbs/yr)	
	0-15,000	MGY	3.3	0.4	1.7	0.1	
	15,000-2	5,000 MGY	10.5	1.6	4	0.7	
	Above 25	5,000 MGY	64.6	9.3	10.2	1.8	
		lion gallons per		S Dischan	rgers		
	Final WLA	S IOF Oth	er NFDE	<u> Discilai</u>	<u>zc15</u>		

R

E

TMDL Element		Calleguas (Creek Wa	tershed Me	etals and S	Selenium T	MDL
		Copp	er*	Nicl	kel	Seler	nium
	Reach	Dry Monthly Everage (ug/L)**	Wet Daily Maximum (ug/L)**	Dry Monthly Average (ug/L)***	Wet Daily Maximum (ug/L)***	Dry Monthly Average (ug/L)	Wet Daily Maximum (ug/L)
	1	3.7*WER	5.8*WER	8.2	74	(b)	(b)
	2	3.7*WER	5.8*WER	8.2	74	(b)	(b)
	3	27.0	27.4	149	859	(b)	(b)
	4	3.7*WER	5.8*WER	8.3	75	5	290
	5	3.7*WER	5.8*WER	8.3	75	5	290
	6	(a)	31.0	(a)	958	(b)	(b)
	7	(a)	31.0	(a)	958	(b)	(b)
	8	(a)	31.0	(a)	958	(b)	(b)
	10	29.1 29.1	43.3 43.3	160 160	1296 1296	(b)	(b)
	11	29.1	43.3	160	1296	(b)	(b)
	12	29.1	43.3	160	1296	(b)	(b)
	13	29.1	43.3	160	1296	(b)	(b)
Load Allocation	not excee ** Con translator *** Con translator (a) Disc wea (b) Sele Imp II. There source equal water organi	ed the performance centration-based of 0.96 for fresh icentration-based of 0.997 for fresh charges from these thanks and the charges from the senium waste load elementation action. Final WI is insufficional insu	the standards of targets have be water reaches a targets have be hwater reaches se reaches do not a sare not require allocations havens include constant and the same targets have been to se are not require allocations havens include constant and the same targets and the same targets are the same target	nd 0.83 for saltwaren converted to to and 0.99 for saltwaren calculated for these reaches on the end to be not been development of the visideration of the visideration of the visideration.	technologies otal recoverable ater reaches. otal recoverable vater reaches. lleguas Creek a es. opped for this rea vatershed-wide ign mass b d waste loa discharge uman heal	allocations using allocations using allocations using allocations using and Mugu Lagoon ich as it is not on selenium impacts assed WLAs ads allocations based on th from con	the CTR default during dry the 303(d) list. Is to these ons are set the CTR sumption
Loau Anocauon	develo Open natura groun- ambie agricu weath are les LAs a rate fo sedim flow o	space repre space repre d soil conce dwater seep ent sources t dtural and u er. The dry- ss than 86 th pply to day or each reac ent were de	oper, nicker sents back entrations, page) disch that are discreban areas weather L percentile s when floth. Annual eveloped ack	el, and selent ground load atmospheric arged from scharged from a LAs are of As apply to flow rate for two in the st mass loads according to	ium in totals from an edeposition undevelopm developed days when each ream excellow, meditals.	al recoverable al recoverable al recoverable al recoverable and naturated open speed land, such for both we fin flows in the ch. The wethed 86 th percey in suspendum, and high	es (i.e. ral ace, but not ch as t and dry-he stream e-weather entile flow ded

R

E

Copp Interio			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	als and			VID L
Copp Interio	ims and Fi	nal Load	Allocation	ons for	Total l	Recove	rable
Interin	er, Nickel,						
	m limits are			time for	r disch	argers t	o nut in
prace	implementa					_	-
	tions. The						
	are set equa						
	arge data. I				cations	s are ap	piiea in
receiv	ing water a	t the com	pliance p	oints.			
A. Int	terim Limi						
	Callegue	as and Cone Dry	jo Creek		Revol	on Sloug	<u>h</u>
Constituent	Dry Daily	Monthly	Wet Daily			onthly	Wet Daily
	Maximum (ug/L)	Average	Maximum (ug/L)	Maxim (ug/	D A	verage	Maximum (ug/L)
Copper	24	(ug/L) 19	1390	24	((ug/L) 19	1390
Nickel	43	42	(a)	43		42	(a)
Selenium	(b)	(b)	(b)	6.7 (0		6 (c)	(a)
avai B. Fin	ninment of intering lable. nal Load Alley Weather	n limits will be	evaluated in	considerati	on of back		
avai B. Fin	lable.	n limits will be	e evaluated in	considerati	on of back	ground loa	ding data, if
B. Fin 1. Dr	lable. nal Load A	llocation LAs in V	Vater Co	considerati lumn (l	on of back lbs/day	ground loa	ding data, if
B. Fin 1. Dr	lable. nal Load A y Weather	n limits will be	Vater Co	considerati	on of back	ground loa	ding data, if
B. Fin 1. Dr	lable. nal Load A y Weather stituent	llocation LAs in V Call Low Flow	Vater Co eguas Cree Average	lumn (lk Elevated Flow	on of back Ibs/day Record	ground loa 7) evolon Sk Average	ough Elevated Flow
B. Fin 1. Dr	nal Load Ally Weather stituent Agriculture	llocation LAs in V Call Low Flow	Vater Co eguas Cree Average	lumn (lk Elevated Flow	on of back Ibs/day Record Low Flow	ground loa v) evolon Sk Average Flow	ough Elevated Flow
B. Fin 1. Dr	nal Load A y Weather stituent Agriculture Open Space	limits will be llocation LAs in V Calle Low Flow 0.07* WER- 0.03 0.150	Vater Co eguas Cree Average Flow 0.12* WER- 0.02 0.080	lumn (Ikk Elevated Flow 0.05 0.130	Ibs/day Re Low Flow 0.07*WER 0.03 0.050	evolon Ske Average Flow 0.14*WER 0.07 0.120	bugh Elevated Flow - 0.35*WER 0.07 0.110
B. Fin 1. Dr	nal Load A y Weather stituent Agriculture Open Space Agriculture	LAS in V Calle Low Flow 0.07* WER- 0.03 0.150 0.420	Vater Co eguas Cree Average Flow 0.12* WER- 0.02 0.080 0.260	lumn (I k Elevated Flow 0.05 0.130 0.970	Ibs/day Re Low Flow 0.07*WER 0.03 0.050 0.390	evolon Side Flow 0.14*WER 0.07 0.120 0.690	bugh Elevated Flow - 0.35*WER 0.07 0.110 1.600
B. Fin 1. Dr Cons Copper*	nal Load A y Weather stituent Agriculture Open Space	limits will be llocation LAs in V Calle Low Flow 0.07* WER- 0.03 0.150	Vater Co eguas Cree Average Flow 0.12* WER- 0.02 0.080	lumn (Ikk Elevated Flow 0.05 0.130	Ibs/day Re Low Flow 0.07*WER 0.03 0.050	evolon Ske Average Flow 0.14*WER 0.07 0.120	bugh Elevated Flow - 0.35*WER 0.07 0.110

R

TMDL Element	Calle	eguas Cre	ek Wa	ater	shed M	etals a	and Sel	enium	TMD	L		
	Constituen	tl .	1	Ca	leguas C	reek	<u> </u>	Revol	on Slou	n h		
	Constituen	4	(0.0		*Q^2*0.01		(0.0		^2+0.003			
	Copper*	Agricultui			R - 0.02	Q -	WEI		2+0.000	+ (4)		
	оорре.	Open Spa			7*Q^2+0.	00321*			Q^2+0.00	0765*∩		
		Agricultui			2+0.82*Q	00021		27*Q^2+		0703 Q		
	Nickel**	Open Spa			2+0.82*Q			7*Q^2+				
		Agricultur		1 4 Q	Z+0.02 Q							
	Selenium **	Open Spa										
	* If site spec			l by th	Pagional 1	Roard T		load allocations shall be				
	Implemen Q Daily storm II. Interi (lbs/y) Final I Interir	allocations have tation actions in volume mand Fi	nal LA et at 80 or merc	As fo	or Merce	eury in from ended	n Suspe n HSPF sedime	nded stands and the stands and the stands are	Sedime stimates set equa	s. al to		
	output	for the ye	Ca	llegu	as Creek		1	Revolon	Slough			
	Flow Ra	nge A	Agricultu	ıre	Open S	pace	Agricultu	re	Open S	pace		
		_	erim F	inal	Interim	Final	Interim	Final	Interim	Final		
	0-15,000 MG	Y ¹ 3	3.9	0.5	5.5	0.7	2	0.2	2.9	0.2		
	15,000-25,000	0 MGY 1	2.6	1.9	17.6	2 .7	4.8	0.8	6.7	1.1		
	Above 25,000	MGY 7	7.5	11.2	108.4	17.9	12.2	2.2	17.1	2		
Margin of Safety	A margin o	-	MOS)				_			-		
	in the water this TMDI assumption ensure suff methods en assigned to implement reductions never excethree years loads and I discharges dilution proconcentrate copper and	er bodies. The imns made deficient promployed in the TME cation of the for the other cation of the exceedand loading cation California in the covided by ions in the	Both a plicit I uring of tection n develope TM her someric trace refugacity leguas a tidal for the tage.	implement of the control of the cont	icit and S stems lopmen der all cong the Tumed to This rest. Calcut concerded in the Mugu Lek and ling), what 15%	explication from to of me condition from the crucial contraction from the crucial crucial contraction from the crucial cruc	cit MOS the use of ultiple reconstant ons and on Back in const in higher of allo ons rather R. Calc on are bas on Sloug ever preceit MOS	S are in of consequences are than culation sed on gh (will licts as is also	ncluded servative ic target rvative d loads roughou ired s is base the onc ns of cu the con thout ar ctual	for re as to are at the ed on arrent arbined by led for		

R

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	calculation of the allowable load based on the median flow rate and translator of each flow category. The 15% explicit MOS is determined sufficient to address the elevated flow category, but still account for the more conservative nature of low and average category.
Future Growth	Ventura County accounts for slightly more than 2% of the state's residents with a population of 753,197 (US Census Bureau, 2000). GIS analysis of the 2000 census data yields a population estimate of 334,000 for the CCW, which equals about 44% of the county population. According to the Southern California Association of Governments (SCAG), growth in Ventura County averaged about 51% per decade from 1900-2000; with growth exceeding 70% in the 1920s, 1950s, and 1960s. Significant population growth is expected to occur within and near present city limits until at least 2020. Future growth may initially increase loadings as construction activities expose bare soil and increase erosion-related discharges to receiving water. However, once development has been completed the presence of impermeable land surface and landscaped areas may reduce the amount of natural soils that are eroded and carried to the stream. For copper, future growth could increase loadings from urban areas and POTWs due to increased traffic (i.e., brake pad residues), architectural copper use and corrosion of copper pipes. Selenium loading may increase if increase irrigation raises the groundwater table and increases high selenium groundwater seepage to surface waters. However, if increased growth results in increased water demand and high selenium groundwater is pumped and treated to supply this demand, the selenium could decrease.
Seasonal Variations and Critical Conditions	Seasonal variations are addressed for copper, nickel, and selenium by developing separate allocation for wet and dry weather. Critical conditions for copper, nickel, and selenium are developed using model results to calculate the maximum observed 4-day average dry weather concentration and the associated flow condition. Wet weather, as a whole, is defined as a critical condition. For mercury, there is no indication that mercury contamination in Mugu Lagoon is consistently exacerbated at any particular time of the year. Since the potential effects of mercury are related to bioaccumulation in the food chain over long period time, any other short term variations in concentration which might occur are not likely to cause significant impacts upon beneficial uses. Therefore, seasonal variations do not affect critical conditions for Calleguas Creek watershed mercury TMDL.
Special Studies and Monitoring Plan	Several special studies are planned to improve understanding of key aspects related to achievement of WLAs and LAs for the Metals and

R

E

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	Selenium TMDL
	1. Special Study #1 (Optional) – Evaluation and Initiation of Natural Sources Exclusion
	The TMDL technical report has identified ambient sources as the primary significant selenium and mercury loadings in the watershed and as potentially significant sources of copper and nickel. The portion of all ambient sources associated with open space runoff and natural groundwater seepage is accounted for in this TMDL as "background load." This special study will evaluate whether or not background loads for each constituent qualify for natural source exclusion. This study will also consider whether or not any portion of the ambient source contribution for agricultural or urban runoff loads qualify for natural source exclusions and/or provide a basis for site specific objectives. The presence of natural sources makes achievement of selenium and mercury targets during all conditions unlikely. For copper, achievement of the CTR targets or the WER based targets (if approved) in Revolon Slough may not be feasible due to the magnitude of background loads. Completion of site specific objectives and/or a use attainability analysis shall be required to review any potential change to water quality objectives for these constituents. This special study will be used to develop the necessary information to revise the water quality objectives for selenium and mercury and possibly for copper and nickel.
	2. Special Study #2 (Optional) – Identification of selenium contaminated Groundwater Sources
	The purpose of this special study will be to identify groundwater with high concentrations of selenium that is either being discharged directly to the stream or used as irrigation water. The investigation will focus on areas where groundwater has a high probability of reaching the stream and identify practical actions to reduce the discharge of the groundwater to the stream. The analysis will include an assessment of the availability of alternative water supplies for irrigation water, the costs of the alternative water supplies and the costs of reducing groundwater discharges.
	3. Special Study #3 (Optional) – Investigation of Soil Concentrations and Identification of "Hot Spots"
	The purpose of this special study will be to identify terrestrial areas with high concentrations of metals and/or selenium, either due to anthropogenic sources or resulting from high natural concentrations in

R

E

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	soils. Use of detailed soil maps for the watershed in combination with field survey and soil sampling may lead to identification of areas important for reducing overall loads reaching the stream. Identification of any areas with elevated soil concentrations of metals and/or selenium would create an opportunity for efficient and targeted implementation actions, such as remediation or erosion control.
	4. Special Study #4 (Optional) – Determination of Water Effect Ratio for Copper in Revolon Slough
	The purpose of this optional special study would be to calculate a WER for copper that is specific to Revolon Slough. A WER was not previously developed for Revolon Slough because it was not listed for copper. Subsequent monitoring demonstrated that the saltwater copper CTR criterion was exceeded in the Revolon Slough. This Study would parallel the developed WER for Mugu Lagoon and Calleguas Creek. This is an optional special study to be conducted if desired by the stakeholders or determined necessary by the Executive Officer.
	5. Special Study #5 (Optional) – Determination of Site-Specific Objectives for Mercury and Selenium
	Special Study #1 will evaluate whether a natural source exclusion is appropriate for background loads of mercury and selenium or any portion of the ambient source contributions to non-background loads in the Calleguas Creek watershed. This special study will develop any SSOs deemed necessary to account for the background conditions and/or site-specific impacts of mercury and selenium (and possibly for copper and nickel) on wildlife and humans in the watershed. This is an optional special study to be conducted if desired by the stakeholders or determined necessary for establishing a natural source exclusion.
	Monitoring Plan
	The Calleguas Creek Watershed TMDL Monitoring Plan (CCWTMP) is designed to monitor and evaluate the implementation of this TMDL and refine the understanding of metal and selenium loads. CCWTMP is intended to parallel efforts of the Calleguas Creek Watershed Nutrients TMDL, Toxicity TMDL, and OC Pesticide, PCBs, and Sediment TMDL monitoring programs. The proposed CCWTMP shall be made available for public review before approval by the Executive Officer.
	The goals of the CCWTMP include: (1) to determine compliance with copper, mercury, nickel, and selenium numeric targets at receiving water monitoring stations and at POTWs discharges; (2) to determine

 \mathbf{R}

E

D

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	compliance with waste load and load allocations for copper, mercury, nickel, and selenium at receiving water monitoring stations and at POTWs discharges; (3) to monitor the effect of implementation action by urban, POTW, and agricultural dischargers on in-stream water quality; and (4) to implement the CCWTMP in a manner consistent with other TMDL implementation plans and regulatory actions within the Calleguas Creek watershed.
	Monitoring conducted through the Conditional Waiver Program may meet part of the needs of the CCWTMP. To the extent monitoring required by the Metals and Selenium TMDL Implementation Plan parallels monitoring required by the Conditional Waiver Program, it shall be coordinated with the Conditional Waiver Program monitoring conducted by individuals and groups subject to the term and conditions of the Conditional Waiver.
	Monitoring will begin within one year of the effective date of the TMDL. In-stream water column samples will be collected monthly for analysis of general water quality constituents (GWQC), copper, mercury, nickel, selenium, and zinc for the first year. After the first year, the Executive Officer will review the monitoring report and revise the monitoring frequency as appropriate. In-stream water column samples will be generally be collected at the base of Revolon Slough and Calleguas Creek, and in Mugu Lagoon (collection of flow-based samples will occur above the tidal prism). Additionally, sediment samples will be collected semi-annually in Mugu Lagoon and analyzed for sediment toxicity resulting from copper, mercury, nickel, selenium, and zinc. At such a time as numeric targets are consistently met at these points, an additional site or sites will be considered for monitoring to ensure numeric targets are met throughout the lower watershed.
	Additional samples will be collected concurrently at representative agricultural and urban runoff land use stations as well as at POTWs in each of the subwatersheds and analyzed for GWQCs, copper, mercury, nickel, selenium, and zinc. The location of the land use stations will be determined before initiation of the CCWTMP. Environmentally relevant detection limits will be used for metals and selenium (i.e. detection limits lower than applicable target), if available at a commercial laboratory.
	Compliance sampling station locations:

R

E

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL		and Selenium TMDL	
	Subwatershed	Station ID	Station Location	Contituent
	Mugu Lagoon	01-11-BR	11th Street Bridge	Water Column: Cu, Ni, Hg, Se, Zn Bird Egg: Hg, Se Fish Tisue: Hg, Se
	Revolon Slough	04-WOOD	Revolon Slough East	Sediment: Cu, Ni, Hg, Se, Zn Water Column: Cu, Ni, Hg, Se, Zn
		03-CAMAR	Side of Wood Road Calleguas Creek at	Fish Tisue: Hg, Se Water Column: Cu, Ni, Hg, Se, Zn
	Calleguas Creek	03D-CAMR	University Drive Camrosa Water Reclamation Plant	Water Column: Cu, Ni, Hg, Se, Zn
		9AD-CAMA	Camarillo Water Reclamation Plant	Water Column: Cu, Ni, Hg, Se, Zn
	Conejo Creek	10D-HILL	Hill Canyon Wastewater Treatment Plant	Water Column: Cu, Ni, Hg, Se, Zn
Implementation Plan The final WLA POTWs, and of compliance schemay revise these through special TMDL. In add the assumption proceed follows WER and SSO required. The implementation WLAs establish implemented the determined through special transplants implemented the NPDES per towards discontinuous plan is implementation implementation implemented. In meet allocation The Regional Econsistent with regional guidant revised, the Regional guidance. In accordance we see through special transplants in the second plan is implemented. In accordance we such guidance.		ther NPDE needules prose WLAs be a studies are dition, the into that a WE wing the TM onot proceed implement in actions to the different on the hrough NP ough monimit. The Hatinuing the duction of an plan includent of the different of the assumance or praces gional Board with current oped for all with current oped for all studies.	ES discharges in accovided in Table 7-1 pased on additional ad/or monitoring complementation school of the copper and a MDL. Should adoped, additional implation plan includes address these constitutes the major POTV DES permit limits toring of final effluill Canyon and Cast discharge of effluill Canyon and Cast discharge of effluing POTW allocations effluent discharges udes sufficient time if this plan is altered to ensure that aptions of the WLA tice for implementary may reevaluate and permitted stormy a group of the practice, and the practice of the	9.2. The Regional Board information developed onducted as part of this nedule was developed with a SSO for nickel will otion and approvals of the ementation actions could be a discussion of

R

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	industrial and construction stormwater permits, and Naval Air Weapons Station Point Mugu. MS4 WLAs will be incorporated into the NPDES permit as receiving water limits measured in-stream at the base of Revolon Slough and Calleguas Creek, and in Mugu Lagoon and will be achieved through the implementation of BMPs as outlined in the implementation plan. The Regional Board will need to ensure that permit conditions are consistent with the assumptions of the WLAs. If BMPs are to be used, the Regional Board will need to detail its findings and conclusions supporting the use of BMPs in the NPDES permit fact sheets. Should federal, state, or regional guidance or practice for implementing WLAs into permits be revised, the Regional Board may reevaluated the TMDL to incorporate such guidance. The Regional Board may revise these WLAs based on the collection of additional information developed through special studies and/or monitoring conducted as part of this TMDL.
	LAs will be implemented through the State's Nonpoint Source Pollution Control Program (NPSPCP) and Conditional Waiver for Discharges from Irrigated Lands adopted by the Los Angeles Regional Water Quality Control Board on November 3, 2005. Compliance with LAs will be measured in-stream at the base of Revolon Slough and Calleguas Creek and in Mugu Lagoon and will be achieved through the implementation of BMPs consistent with the NPSPCP and the Conditional Waiver Program.
	The Conditional Waiver Program requires the development of an agricultural water quality management plan (AWQMP) to address pollutants that are exceeding receiving water quality objectives as a result of agricultural discharges. Therefore, implementation of the load allocations will be through the development of an AWQMP for metals and selenium. Implementation of the load allocations will also include the coordination of BMPs being implemented under other required programs to ensure metal discharges are considered in the implementation. Additionally, agricultural dischargers will participate in educational seminars on the implementation of BMPs as required under the Conditional Program. Studies are currently being conducted to assess the extent of BMP implementation and provide information on the effectiveness of BMPs for agriculture. This information will be integrated into the AWQMP that will guide the implementation of agricultural BMPs in the Calleguas Creek watershed. After implementation of these actions, compliance with the allocations and TMDL will be evaluated and the allocations reconsidered if necessary based on the special studies and monitoring plan section of the implementation plan

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL		
	As shown in Table 7-19.2, implementation of LAs will be conducted over a period of time to allow for implementation of the BMPs, as well as coordination with special studies and implementation actions resulting from other TMDL Implementation Plans (Nutrient, Historic Pesticides and PCBs, Sediment, Metals, Bacteria, etc.). The Regional Board may revise the LAs based on the collection of additional information developed through special studies and/or monitoring conducted as part of this TMDL.		

R

E

V

I

S

E

D

Ľ

. .

T

A

T

I

V

Table 7-19.2 Calleguas Creek Watershed Metals and Selenium TMDL: Implementation Schedule

Implementation Schedule						
Item	Implementation Action ¹	Responsible Party	Completion Date			
1	Effective date of interim Metals and Selenium TMDL waste load allocation (WLAs)	POTWs, Permitted Stormwater Dischargers ² (PSD)	Effective date of the amendment			
2	Effective date of interim Metals and Selenium TMDL load allocation (LAs)	Agricultural Dischargers	Effective date of the amendment			
3a	Submit Calleguas Creek Watershed Metals and Selenium Monitoring Program	POTWs, PSD, Agricultural Dischargers	Within 3 months after the effective date of the amendment			
3b	Implement Calleguas Creek Watershed Metals and Selenium Monitoring Program	POTWs, PSD, Agricultural Dischargers	Within 3 months of Executive Officer approval of the monitoring program			
4a	Conduct a source control study, develop and submit an Urban Water Quality Management Program (UWQMP) for copper, mercury, nickel, and selenium	MS4s	Within 2 years after the effective date of the amendment			
4b	Conduct a source control study, develop and submit an UWQMP for copper, mercury, nickel, and selenium	Caltrans	Within 2 years after the effective date of the amendment			
4c	Conduct a source control study, develop and submit an UWQMP for copper, mercury, nickel, and selenium	NAWS point Mugu (US Navy)	Within 2 years after the effective date of the amendment			
5	Implement UWQMP	PSD	Within 1 year of approval of UWQMP by the Executive Officer			
6	Develop and submit an Agricultural Water Quality Management Program (AWQMP) as described in the Conditional Waiver Program	Agricultural Dischargers	Within 2 years after the effective date of the amendment			
7	Implement AWQMP	Agricultural Dischargers	Within 1 year of approval of AWQMP by the Executive Officer			
8	Seek delisting of zinc from the 303(d) list for Reach 1, Mugu Lagoon (available data suggest zinc is not causing impairment in the CCW)	POTWs, PSD, Agricultural Dischargers	During comment period for next 303(d) Listing cycle			
9	Submit progress report on salinity management plan, including status of reducing WRP effluent discharges to Conejo and Calleguas Creek reaches of the watershed	POTWs	Within 3 years after the effective date of the amendment			
10	If progress report identifies the effluent discharges reduction is not progressing, develop and implement source control activities for copper, mercury, nickel, and selenium	POTWs	Within 4 years after the effective date of the amendment			
11	Re-evaluation of POTW interim waste load allocations for copper, mercury, and nickel	POTWs	Within 5 years after the effective date of the amendment			

_

¹ The Regional Board regulatory programs addressing all discharges in effect at the time this implementation task is due may contain requirements substantially similar to the requirements of these implementation tasks. If such requirements are in place in another regulatory program including other TMDLs, the Executive Officer may revise or eliminate this implementation task to coordinate this TMDL implementation plan with other regulatory programs.

² Permitted Stormwater Dischargers (PSD) include MS4s, Caltrans, the Naval Air Weapons Station at Point Mugu, and general industrial and construction permittees.

R

E

Item	Implementation Action ¹	Responsible Party	Completion Date
12a	Evaluate the results of the OCs TMDL, Special Study – Calculation of sediment transport rates in the Calleguas Creek watershed for applicability to the metals and selenium TMDL	Agricultural Dischargers, PSD	Within 6 months of completion of the study
12b	Include monitoring for copper, mercury, nickel, and selenium in the OC pesticides TMDL, special Study – Monitoring of sediment by source and land use type	Agricultural Dischargers, PSD	Within 2 years after the effective date of the amendment
12c	Expand scope of the OC Pesticide TMDL, Special Study – Examination of food webs and accumulation in the Calleguas Creek watershed to ensure protection of wildlife to include mercury	Interested parties	If necessary, prior to end of the implementation period
12d	Evaluate the results of the OC Pesticides TMDL, Special Study – Effects of BMPs on Sediment and Siltation to determine the impacts on metals and selenium	Agricultural Dischargers, PSD	Within 6 months of completion of the study
13a	Submit work plan for Special Study #1 (Optional) – Identification of Natural Sources Exclusion	Agricultural Dischargers, PSD	Within 1 year after the effective date of the amendment
13b	Submit results of Special Study #1 (Optional) – Identification of Natural Sources Exclusion	Agricultural Dischargers, PSD	Within 3 years of approval of workplan by Executive Officer
14a	Submit work plan for Special Study #2 (Optional) – Identification of selenium Contaminated Groundwater Sources	POTWs, PSD, and Agricultural Dischargers	Within 1 year after the effective date of the amendment
14b	Submit results of Special Study #2 (Optional) – Identification of selenium Contaminated Groundwater Sources	POTWs, PSD, and Agricultural Dischargers	Within 1 year of approval of workplan by Executive Officer
15a	Submit work plan for Special Study #3 (Optional) – Investigation of Metals' "Hot Spot" and Natural Soil	PSD and Agricultural Discharger	Within 1 year after the effective date of the amendment
15b	Submit results of Special Study #3 (Optional) – Investigation of metals' "Hot Spot" and Natural Soil	PSD and Agricultural Discharger	Within 2 years of approval of workplan by Executive Officer
16	Special Study #4 (Optional) – Determination of WER for copper in Revolon Slough	PSD and Agricultural Dischargers	If necessary, prior to end of the implementation period
17	Special Study #5 (Optional) – Determination of Site Specific Objective for Mercury and Selenium	PSD and Agricultural Dischargers	If necessary, prior to end of the implementation period
18	Evaluate effectiveness of BMPs implemented under the AWQMP and UWQMP in controlling metals and selenium discharges	PSD and Agricultural Dischargers	6 years after the effective date of the amendment
19	Evaluate the results of implementation actions 14 and 15 (Special Study #2 & #3) and implement actions identified by the studies	POTWs, PSD, and Agricultural Dischargers	Within 1 year after the completion of the studies
20	If needed, implement additional BMPs or revise existing BMPs to address any issues not covered by implementation efforts of related Calleguas Creek watershed TMDLs (Nutrients, Toxicity, OC Pesticides, PCBs, and Siltation) and the Conditional Waiver Program	Agricultural Dischargers	7 years after the effective date of the amendment
21	Consider nickel SSO proposed by stakeholders	Regional Board	1 years after the effective

Item	Implementation Action ¹	Responsible Party	Completion Date
			date of the amendment.
22	Prepare water effect ratios for copper based on study performed by stakeholders for Regional Board consideration	Regional Board staff	Within 4 months of Regional Board adoption of the amendment.
23	Based on the result from items 1-23, Regional Board will consider re-evaluation of the TMDLs, WLAs, and LAs if necessary	Regional Board	2 years form submittal of information necessary for re-evaluation
24	POTWs will be required to reduce loadings by 25%, 50%, and 100% of the difference between the current loading and the WLAs at 5, 8, and 10 years after the effective date, respectively.	POTWs	5, 8, and 10 years after the effective date of the amendment
25	Re-evaluation of Agricultural and Urban load and waste load allocations for copper, mercury, nickel, and selenium based on the evaluation of BMP effectiveness. Agricultural and urban dischargers will have a required 25%, 50%, and 100% reduction in the difference between the current loadings and the load allocations at 5, 10, and 15 years after the effective date, respectively.	Agricultural and Urban Dischargers	5, 10, and 15 years after the effective date of the amendment
26	Stakeholders and Regional Board staff will provide information items to the Regional Board, including: progress toward meeting TMDL load reductions, water quality data, and a summary of implementation activities completed to date	Regional Board	2 years after the effective date, and every 2 years following
27	Achievement of Final WLAs and water quality standards for copper, mercury, nickel, and selenium	POTWs	Within 10 years after the effective date of the amendment ³
28	Achievement of Final WLAs and LAs and water quality standards for copper, nickel, mercury and selenium	Agricultural Dischargers, PSD	Within 15 years after the effective date of the amendment ³

_

³ Date of achievement of WLAs and LAs based on the estimated timeframe for educational programs, special studies, and implementation of appropriate BMPs and associated monitoring. The Conditional Waiver Program will set timeframes for the BMP management plans.